

# Recycling of EV batteries: Legal context and Umicore technology

World of Energy Solutions Session E5 Stuttgart, 1 October 2013



Dr. Jan Tytgat – Umicore



# Content

### (H)EV Battery Recycling: legislative context

- Why battery recycling?
- Producers responsibilities
- Calculation of the Recycling Efficiency
- BD and ELV

### **Battery recycling technology**

- General concepts and challenges
- Umicore Battery Recycling
  - process description
  - RE-calculation applied



(H)EV Battery Recycling: legislative context



### Why Battery Recycling? Part of the clean mobility global picture clean mobility





### Why battery recycling?

• EHS concern: EV-Batteries = a complex mixture of chemical elements and compounds:

- Li-ion: H, Li, C, O, F, Al, (Si), P, (Ti), Mn, Fe, Co, Ni, Cu, (Sn)
- NiMH: H, C, O, K, Fe, Co, Ni, La, Ce, Pr, Nd
- Electrolyte, solvent, plastics...
- Legislative context in EU
  - End of Life of Vehicles Directive (ELV): removal of batteries
  - Batteries Directive: ban on incineration and landfill of industrial batteries
    - To avoid dissemination of hazardous compounds
    - Resource efficiency
    - Quality target: recycling efficiency (RE) ≥ 50 %
       DE (bettery recycled meterials)/(bettery input meterials)
      - RE = (battery recycled materials)/(battery input materials on dry basis)



### BD: Producers obligations regarding recycling

### • Basic principle:

- Extended Producer Responsibility
- Producer = any person in a Member State that... places batteries or accumulators, including those incorporated into appliances or vehicles, on the market for the first time within the territory of that Member State on a professional basis → for same type of EV, sold in different countries, 'battery Producer' can be different

• (H)EV batteries are 'industrial' batteries, not automotive batteries (= limited to SLI-batteries).

- no collection target, but take-back obligation ( $\rightarrow$  reuse, recycling)
- Recycling Efficiency target (RE)
  - 50% of battery weight has to be transformed into an *output fraction that has* ceased to be waste or that will be used for their original purpose or for another purpose (without undergoing further treatment).



# Calculation of the Recycling Efficiency

- the Battery Directive's RE is a process efficiency indicator
  - Calculated per calendar year
  - On process/operator level:
    - 2 operators with 'same' process = different processes
    - 1 operator with 2 processes = different processes
    - 1 operator processing different battery chemistries together = same process
  - Refers to 'recycling' only, not including other recovery (energy).
  - Including all steps until the 'end of recycling' (output fractions with a 'purpose' without further treatment)

→ All batteries processed during the same year in the same process generate 1 RE!

- the Battery Directive's RE is calculated on 'battery level'
  - Non-battery materials, e.g. casing of battery packs, are excluded
  - EV-battery assemblies are not considered as 'packs' but as 'batteries'
  - Battery cells are also considered as batteries
- Reporting: responsibility of first recycler (= operator that 'breaks' the battery)
  - → consolidation of all subsequent recycling operations



# Calculation of the Recycling Efficiency

Non-active battery parts recycled according to existing schemes: partial RE (calculated according to BD) to be reported to '1st recycler'

Considered as 'battery': breakdown of battery = 1st recycling step; agglomerated RE includes partial RE of all subsequent process steps



50 % target applicable, when offered as such to recycling company



Active battery parts recycled according to dedicated battery recycling schemes: partial RE to be reported to '1st recycler'

50 % target applicable, when offered as such to recycling company



# Calculation of the Recycling Efficiency

### Impact of material choices of non-active parts

• Based on interviews, Recharge<sup>1</sup> concluded that relative % (w/w) of cells varies between 40-70% of (H)EV battery assembly weight; metals: 15-40%; plastics: 10-15%. Main difference is OEM's choice for protective casing material (metal or synthetic fibres)

• For same partial RE for each material flow, resulting agglomerated RE can vary significantly



batteries industry (<u>http://www.rechargebatteries.org/</u>)



# Consolidation of batteries RE in ELV reporting





### Consolidation of batteries RE in ELV reporting

• BD RE and ELV recycling rates are other concepts



• Suggestion: to consider batteries as 100 % recycled if delivered to compliant battery recycler



# **Battery recycling technology**



### Battery recycling concepts



|               | Early process steps                                                   | Later process steps                                                       |
|---------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Pre-treatment | Low investment cost; low<br>environmental burden; high<br>labour cost | High metal losses; high<br>labour cost; moderate<br>investment costs      |
| Metallurgy    | High investment; moderate<br>environmental burden; low<br>labour cost | Efficient metal recovery;<br>low labour cost; moderate<br>investment cost |

Source: prof. B. Friedrich, RWTH

- All recycling concepts are combinations of 'pre-treatment' (disassembling, shredding, pyrolysis) and metallurgical processes (pyro or hydro)
- Optimum combination depends on battery chemistry and design, scale leverage effects, processes, ...



### Battery recycling concepts: simplified flow sheet





### Battery recycling concepts: challenges

- Dismantling
  - Labour intensive: Manual → semi-automated → mechanical breaking
  - <u>Safety</u>: State of Charge?
- Shredding
  - Charged batteries + inflammable solvents = <u>fire risk;</u> → inert atmosphere or cryogenic shredding
  - Alternatively: pyrolysis before shredding
- Pyrometallurgy
  - Optimum conditions for maximum metal yields
- Hydrometallurgy:
  - <u>Robustness</u> of the process to cope with variety of input materials
- General
  - <u>Quality</u> of the recycled products: should meet industry standards
  - <u>Cost</u>: complex material flow and (still) small quantities



### Battery recycling concepts: process choices

| Shre                                                                                         | dding                                                                                                                                                    | Pyro or hydro                                                                                                                          |                                                                                                                                                                             |  |  |  |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| +                                                                                            | -                                                                                                                                                        | pyro                                                                                                                                   | hydro                                                                                                                                                                       |  |  |  |
| CC                                                                                           | ost                                                                                                                                                      | cost                                                                                                                                   |                                                                                                                                                                             |  |  |  |
| <ul> <li>smaller fraction to<br/>metallurgical process: lower<br/>investment cost</li> </ul> | <ul> <li>several consecutive<br/>operations: more labour cost</li> </ul>                                                                                 | <ul> <li>low value metals are recycled at low cost</li> <li>higher investment cost</li> </ul>                                          | <ul> <li>need to refine also low<br/>value metals (mainly labour<br/>cost)</li> </ul>                                                                                       |  |  |  |
| Life Cycle Ass                                                                               | essment (LCA)                                                                                                                                            | Life Cycle Assessment (LCA)                                                                                                            |                                                                                                                                                                             |  |  |  |
| <ul> <li>more LCA credits for<br/>recovered AI (as metal)</li> </ul>                         | <ul> <li>safety risk (fire) requires<br/>discharging or shredding<br/>under inert shield gas or<br/>cryogenic shredding → more<br/>LCA burden</li> </ul> | <ul> <li>slag forming additives<br/>fully recycled</li> <li>energy to heat furnace<br/>recovered from battery<br/>materials</li> </ul> | <ul> <li>are</li> <li>need of chemicals</li> <li>waste water treatment</li> <li>higher credits for recovered<br/>materials (however, quality<br/>not yet proven)</li> </ul> |  |  |  |

Pilot test needed to quantify the effects Scale leverage effects can significantly influence the conclusion



# **Umicore Process description**





# RE calculation applied to the Umicore process

### • Table 1:

- Possible example of elemental composition of EV-battery modules <u>(not an</u> industrial average, not representing a 'real' battery)
- Calculation of theoretical RE on module level:
  - Metals and P are supposed to end up in the right fraction
  - O is partially recovered in metal oxides (slag) and partially emitted as CO<sub>2</sub> and H<sub>2</sub>O
  - C and H are emitted as CO<sub>2</sub> and H<sub>2</sub>O
  - F is collected in a waste fraction

| modules              | Al  | Li  | Ni  | Mn  | Со  | 0   | Cu  | С  | F | Р   | Η |              |
|----------------------|-----|-----|-----|-----|-----|-----|-----|----|---|-----|---|--------------|
| element composition  |     |     |     |     |     |     |     |    |   |     |   |              |
| input fraction (%)   | 12  | 3   | 5   | 12  | 5   | 17  | 10  | 30 | 3 | 1   | 2 | 100          |
| recycling efficiency |     |     |     |     |     |     |     |    |   |     |   |              |
| per element (%)      | 100 | 100 | 100 | 100 | 100 | 50  | 100 | 0  | 0 | 100 | 0 |              |
| recycled in output   |     |     |     |     |     |     |     |    |   |     |   | RE (rounded) |
| fraction (%)         | 12  | 3   | 5   | 12  | 5   | 8,5 | 10  | 0  | 0 | 1   | 0 | = 57%        |

Table 1: calculation of RE on module level



# RE calculation applied to the Umicore process

### • Table 2:

- Calculation of consolidated RE on battery assembly level for:
  - Typical battery assembly with steel casing
  - Typical battery assembly with synthetic fibre casing



Table 2: calculation of a consolidated RE on battery level (calculated for a 100 kg battery)

| RE estimation | steel casing   |         |                 | synthetic fibre casing |         |                 |  |
|---------------|----------------|---------|-----------------|------------------------|---------|-----------------|--|
|               | input fraction | partial | output fraction | input fraction         | partial | output fraction |  |
|               | (kg)           | RE      | (kg)            | (kg)                   | RE      | (kg)            |  |
| modules       | 60             | 57%     | 33,9            | 70                     | 57%     | 39,6            |  |
| metals        | 25             | 98%     | 24,5            | 10                     | 98%     | 9,8             |  |
| plastics      | 10             | 0%      | 0               | 15                     | 0%      | 0               |  |
| mixed         | 5              | 30%     | 1,5             | 5                      | 30%     | 1,5             |  |
| RE (rounded)  |                |         | 60 %            |                        |         | 51 %            |  |



### Conclusions

• EV recycling is subject to ELV and BD; BD recycling efficiency is distinguished from ELV recycling rate

• EV battery recycling is a combination of pre-treatment and metallurgical and chemical processes; the optimum combination depends on many variables (volume, battery chemistry and assembly design, investment and labour cost, ...)

• Low volume of EV batteries today and the uncertainty of the ultimate cell chemistry, make it difficult to fully assess the cost / benefit ratio of EV battery recycling.

• There is a broad range of battery chemistries and the diversification is still going on. Therefore, an EV-battery recycling process has to be robust, in order to cope with this variety.

• The RE is highly influenced by the composition of non-active parts (mainly the protective casing)

• The Umicore process is compliant with the BD RE targets

Contact: jan.tytgat@umicore.com

Thanks!

